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ACOUSTICAL USES FOR 
PERFORATED METALS: 

PART ONE:  THE PRINCIPLES 

I. Introduction 

Of all the markets for perforated metals, acoustical 
applications have seen the most dramatic growth in the last few 
decades.  There is every reason to expect a further surge of growth in 
this area in the near future, to match that of the general economy. 

Much of the new growth in the acoustical market will come 
from original equipment manufacturers (OEM) and from 
architectural firms.  OEM’s will find that they must reduce the noise 
of their products to meet consumer demands, and the architects 
(including highway, airport, and rapid transit designers) are already 
designing noise control into their projects; these applications will 
proliferate as commercial building and government construction pick 
up. 

In order to take full advantage of this potential market 
development, it is important to ensure that the designers of noise 
control applications give full consideration to the use of perforated 
materials, and to present a convincing argument that perforated 
materials are often the best alternative in noise control programs. 

The best way of doing this is to present up-to-date, factual 
information on the acoustical applications of perforated materials 
and to illustrate these uses with enough practical examples to help 
specifiers gain a sense of confidence in recommending the right 
material for the right application, without feeling intimidated by the 
technical aspects of the design. 

It is the purpose of this booklet to provide the necessary 
technical information in an easy-to-use style, and to provide helpful 
hints in the choice of perforated metals, so that professionals can 
recommend these materials to their clients with pride and 
confidence. 
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A. How Perforated Metals Are Used 
in Acoustical Applications 

There are three principal acoustical applications for perforated 
metals: 

1. As a Facing for Something Else:   

Here the perforated metal is used as a protective or 
decorative covering for some special acoustical material; that 
material may be designed either to absorb sound or to reflect or 
scatter sound in a special way. It is this special material that does 
the actual acoustical work, so the purpose of the perforated metal in 
such applications is to "disappear" acoustically: that is, it must be so 
trans parent that the sound waves can pass right through it to 
encounter the acoustical treatment that lies behind.  

Our design goal in this case is to choose the perforated 
metal for greatest sound transparency, for sounds of all frequencies. 

2. In Tuned Resonant Sound Absorbers:   

Sometimes, however, we may wish to absorb sound very 
selectively, only in a certain band of frequencies but not at 
frequencies lying above and below that band. For this purpose we 
design a so-called Resonant Sound Absorber. Here, the perforated 
metal, instead of disappearing, takes an active part in tuning the 
aborber, that is, in determining which frequencies of sound are 
absorbed. 

3. As Airflow Diffusers:   

In the acoustical treatment of certain specialized 
aerodynamic test facilities, such as wind tunnels, perforated metals 
are often used to break up the turbulence in airflows.  

This last application is both highly specialized and highly 
technical. Moreover, it does not represent a significant portion of 
the market; therefore, the rest of this book will be concerned 
entirely with the first two applications. 

The main text of this book is intended for readers with no special 
technical background. It is divided into two parts. The first part deals 
with the principles of noise control treatments using perforated metals; 
the second part deals with typical applications. Readers who want more 
technical detail will find it in the Appendices. 

Appendix D also includes worksheets that may be photocopied, 
filled out and included in the job files for individual projects. 

Figure 1. As an example of the first 
application, the curved surfaces 
above the stage of the Orpheum 
Theatre, Vancouver, B.C., are made 
of finely perforated metal sheet, not 
of plaster as they appear. The 
perforations allow the sound to pass 
through and to reflect back into the 
hall at desired locations, from 
specially designed surfaces behind 
the perforated metal.  
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B. Noise Control With Sound Absorptive Treatments 
Using Perforated Metals 

Noise control measures are often applied in order to quiet 
noisy equipment. We treat various household and office appliances 
to make them acceptable to the user because excessive noise is 
annoying; we treat heavy industrial equipment so that it will comply 
with current OSHA regulations that limit the noise exposure of 
workers so as to protect them from hearing damage.  

In 1970, the Occupational Safety and Health Act (OSHA) set 
limits on the levels of noise to which workers may be exposed in 
their work environments. This regulation requires that industries 
monitor the noise in all worker locations, and, where this noise 
exceeds the permissible limits, it must be abated by any feasible 
noise control measures, or by administrative methods such as 
limiting the employees' exposure time. If such noise control 
procedures turn out not to be feasible, then hearing protection must 
be provided for the workers. 

One effective and commonly used approach is to CONTAIN 
the noise by providing an enclosure around the noisy equipment. 
This approach can work very well, so long as we attend to one very 
important matter: we must provide sound-absorptive treatment inside 
the enclosure, to soak up as much sound as possible. This step is 
necessary because the first thing that happens when we enclose a 
noise source is that the noise, which can no longer escape, builds up 
inside the enclosure to levels that are higher than they were without 
the enclosure. Providing the sound absorptive treatment inside the 
enclosure prevents this undesirable noise build-up and allows the 
enclosure to get on with its job of attenuating the noise to acceptable 
levels outside the enclosure. 

In some cases, the "user" is actually inside the enclosure with 
the noise source, as in a road traffic tunnel. The application of sound-
absorptive materials on the walls and ceiling of the tunnel prevents a 
serious build-up of tire and motor noise, which otherwise could 
distress and confuse the drivers. 

In all such sound absorptive treatments we must take care to 
match the acoustical performance of the treatment to the frequency 
range in which the equipment generates the greatest amount of noise. 
And this is where treatments using perforated metal come in! 
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II. Matching the Sound Absorption to the 
Frequencies Where the Noise Problem 
Lies 

Before beginning to design noise control measures using 
perforated materials, you must decide what kind of noise problem 
you have. 

As suggested under applications 1 and 2, above, perforated 
metals can be used in two completely different ways in acoustical 
applications. 

In the first application, we want the sheet to be as transparent 
as possible to sound of all frequencies. This would be the choice if 
we want to absorb noise that contains energy in a broad range of 
frequencies, or if we want the sound of an orchestra in a concert hall 
to pass freely through a false, decorative, perforated surface in order 
to reach specially designed acoustical treatment behind the sheet. 

 

 

 

 

 

 

 

If on the other hand, we wish to absorb sound in a relatively 
narrow band of frequencies, we use the perforated sheet as an 
integral part of a tuned Resonant Sound Absorber. A common 
application for this kind of treatment is in the inlet of a jet engine. 

The design procedures for these two applications are quite 
different. They are described in Sections III and IV. 

 

 

Figure 2. In refurbishing the 
Rotunda at the Rotunda at the 
University of Virginia, there was a 
conflict between the architect's 
wish to preserve the original 
appearance of Thomas Jefferson's 
handsome plaster dome and the 
need for acoustical treatment to 
quiet the room. The original 
plaster was replaced with curved, 
finely perforated sheet metal 
behind which sound-absorbing 
blankets were hidden, with a 
resulting appearance 
indistinguishable from that of 
plaster.  

Figure 3 Inlet and exhaust ducts of 
jet engine, lined with sound 
absorptive treatment that is faced 
with perforated metal. 
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However, before choosing which of the two applications is 
appropriate, we first have to determine whether our problem 
concerns broad-band or narrow-band noise: that is, whether we will 
require the "TRANSPARENCY" or the "TUNED RESONANCE" 
approach. 

A. Frequency Analysis 

 

Frequency in cycles per second 

 

 

Figure 4. Piano keyboard and musical staff, 
showing the relations to the frequency spectrum. 

 

 

 

Figure 5. Making a sound spectrum, with the 
sound energy concentrated around 250 Hz 

("middle C"). 

 

 

Figure 6. Making a "broad-band" noise with 
wide, flat spectrum. 

 

 

 For this purpose, we need some kind of 
frequency analysis, whether measured or estimated, to 
tell us how the energy of the noise is distributed among 
the various frequencies. 

 We can use the analogy of the piano keyboard, 
here, to represent the range of frequencies of interest: the 
high pitches lie toward the right, the low pitches to the 
left. 

 

 

 If we play a single key (or three or four adjacent 
keys near middle-C, the sound energy will be 
concentrated around the frequency 250Hz (cycles per 
second). 

 

 

 If we use forearms and elbows to play as many 
adjacent keys as we can, the resulting "noise" will be 
distributed over a broad band of frequencies. 

 

 

 A suitable frequency analysis would distinguish 
clearly between these two conditions, and would guide 
us to the appropriate choice of design procedure, when 
we seek to attenuate the noise using perforated metals in 
an accoustical treatment. 
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B. Sound Level Meter 

Such an analysis is made by means of a Sound Level Meter. 

This is a piece of hand-held equipment containing: 

§ a microphone (to convert the sound wave into an 
electrical signal); 

§ an amplifier (to increase the strength of the signal); 

§ a set of filters (to select different ranges of frequencies 
for measurement); and 

§ a meter (or digital read-out device) to indicate the 
sound pressure level being measured. 

If all the filters are switched out, the meter reads the total 
energy of the noise at all frequencies. If only one of the filters is 
switched in, the meter responds only to the energy in the band of 
frequencies passed by the filter. 

 

 

 

 

Figure 7. We can analyze sounds, 
showing how the energy is 
distributed over different 
frequency bands, by means of a 
Sound Level Meter (SLM). 
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C. Frequency Spectrum 

Returning to our piano example above, where only a few 
adjacent notes around middle-C were played, if we measure the 
sound level with the filters successively switched from low to high, 
we would get a strong meter reading only with the filter for the 
frequency band centered around 250 Hz; all the other readings would 
be much lower (corresponding to the ambient room noise). 

This would tell us that, if we wish to attenuate this noise, we 
should use a Tuned Resonant Absorber. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The SLM readings are plotted at the standard 
octave-band frequencies, in order to exhibit the narrow 
spectrum from four adjacent piano notes, as in Fig. 5. 

FREQUENCY (Hz) 

SPL (decibels) 

Piano notes 

Ambient 
Noise 

Ambient Noise 
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For the "all-elbows" piano noise, we would get high meter 
readings with nearly all the filters, indicating that sound energy of 
comparable levels in a broad range of frequencies is present. 

Here, our acoustical treatment would aim for maximum 
transparency from the perforated sheet. 

 

Figure 9. Plot of the SLM readings for the "all-elbows" 
broadband noise of Fig. 6.  

FREQUENCY (Hz) 

SPL (decibels) 
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D. Frequency Spectra for Some 
Household Equipment  

The following figure shows how the noise energy is distributed 
over different frequencies for three typical household appliances. 
The noise of the stove hood is strongest at low frequencies (125 and 
250 Hz), while that of the electric drill is most intense at high 
frequencies (2000 and 4000 Hz). The dehumidifier noise is 
distributed about equally over the entire frequency range. 

It would require different configurations of sound absorptive 
treatment to deal with these three noise spectrums. 

 

Figure 10. Octave-band Sound Pressure Levels for three 
household appliances.  
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Thus, whenever you are called upon to recommend a sound 
absorptive treatment using perforated materials, your first step must 
be to determine the frequency distribution of the offending noise. If 
it is a broad-band noise, you will take the"transparency" approach; if 
it is a narrow-band noise, you must design a Resonant Absorber 
tuned to the frequency (or frequencies) where most of the sound 
energy lies. 

These two design approaches are given in detail in sections III 
and IV, along with illustrative examples. 

Take care, when you measure the noise spectrum, that you 
account for the full range of operating conditions of the equipment 
and/or the work materials. A change of operating speed or work 
material can significantly affect the noise energy distribution. 

Also, you should allow for a possible change in the dominant 
noise frequency as the equipment ages and wears. 
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III. The "Transparency" Approach  

A. Perforated Metal Sheet With High Transparency, for 
Use in Broad-band Sound Absorptive Treatments  

In this application, perforated metal sheet is used as a sound-
transparent protective covering or sound Absorptive als that actually 
do the work of absorbing the sound.  

In this case, because the perforated metal is chosen to be 
completely transparent to sound, it does not alter the intrinsic 
performance of the absorptive material in any way.  

The following figure shows typical sound absorption 
efficiency for glass fiber materials at different frequencies. 

 

Figure 12. Sound absorption coefficients vs frequency, for glass 
fiber materials of different thickness. 

A layer only one inch thick is quite effective at high 
frequencies but very poor at low frequencies. It would be a suitable 
match for quieting noises having frequency spectrums like that of the 
electric drill that are rich in high frequencies. (The match does not 
have to be perfect; it is sufficient to follow general trends). 

On the other hand, a six inch layer is extremely efficient at all 
frequencies (about 99% of the incident noise energy is absorbed). 
The problem is that it takes up a lot of space and is expensive. 

Sound Absorption 
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If it were not for these drawbacks, ALL sound absorption 
treatments would utilize thick blankets, with no further worry about 
targeting specific frequency ranges. Unfortunately, it is not cost 
effective to provide thick absorbing layers when only a limited 
frequency range requires treatment. The Tuned Resonant Absorbers, 
described below, can achieve comparable sound absorption 
efficiency in a limited frequency range, with lower cost and reduced 
space requirements. 

Material thicknesses, intermediate between the 1" and 6" 
treatments shown in the figure, exhibit sound absorptive efficiencies 
intermediate between those two curves, which can be roughly 
matched to the noise spectrum for which noise control is desired.  

A general discussion of the relation between the thickness of 
the glass fiber blanket and the effectiveness of absorption at low 
frequencies is presented at the end of this booklet in Appendix A. 

The next step is the selection of a suitable protective covering. 
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B. Why Perforated Metals Are Often The Best Choice  

You probably already know that perforated metal sheet is often 
used as a facing for acoustical treatments, but if more people also 
realized that for many applications perforated metal is the best 
available facing material, there would be many more such 
applications. 

A great disadvantage of other commonly used sound 
absorptive treatments is that they cannot be cleaned or repainted 
without seriously degrading their sound absorptive properties.  

Perforated metals are unique as components of acoustically 
absorptive treatments because they can be cleaned or refinished 
without harming the absorptive properties for which they were 
designed, subject only to the proper choice of perforation size and 
spacing, described later. 

Other important advantages of perforated metals in such 
applications are: 

§ inherent structural strength, compared with woven or 
felted facing materials; they can stand alone, if necessary; 

§ ability to be formed into complex curved shapes for 
architectural (visual) purposes; 

§ resistance to abuse and damage 

Finally, the chief architectural advantage of perforated metal is 
that it is basically uninteresting. It can be made to look like 
something else: for example, plain plaster. Unfortunately, its neutral 
appearance creates difficulties for us when we try to illustrate this 
advantage in this booklet; photographs don't show up what is really 
going on!  

Figure 13. Although it is not 
conspicuous, the ceiling of this 
classroom is made of perforated 
metal with glass fiber blanket in 
the space behind. 



Page 14 of 76 

C. Sound Transparency of Perforated Metal 

Once a sound absorptive material is chosen to match the noise 
control task at hand, we must select the proper kind of perforated 
metal to serve as a protective covering. We must decide which 
perforation pattern, AMONG THOSE PATTERNS THAT ARE 
READILY AND CURRENTLY AVAILABLE, provides the greatest 
transparency. 

Most people assume that the greater the percent open area of 
the sheet, the more easily sound can go through it. In a general way, 
this assumption is correct…  but not always.  

For example, we could make a sheet with 10% open area in 
two ways: either by making a single large hole at the center or by 
very fine perforations overall. 

In the first case, instead of a transparent facing material, we 
would have a small completely open area at the center of the sheet 
(10% of the total area); but the rest of the sheet would be completely 
opaque to sound, reflecting ALL of it. 

In the second case, the entire sheet is almost completely 
transparent to sound, because the tiny solid areas between the holes 
are too small to intercept the sound waves. 

For high transparency, the most important consideration is to 
have many small perforations, closely spaced. It is better to minimize 
the bar size (the size of the solid portions between the perforations) 
and (to a lesser extent) to minimize the sheet thickness, rather than to 
concentrate on percent open area. 

In order to help the designer choose a suitably transparent 
sheet for such applications, we have introduced a parameter called 
the Transparency Index (TI) given by the following formula: 

TI = nd2/ta2 = 0.04 P/πta2 

where: 

n = number of perforations per sq in; 
d = perforation diameter (in); 
t = sheet thickness (in); 
a = shortest distance between holes 
(in);  a = b – d, where 
b = on-center hole spacing (in); 
P = percent (not fractional) open area of sheet. 

Figure 14. Two samples of perforated 
metal with the same percentage of 
open area. 
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The formula is valid for either straight or staggered 
perforations. An approximation for the value of a, when you do not 
know the value of b, is: 

a = d[(const./P1/2) – 1] 

The value of the constant is 9.5 for staggered and 8.9 for 
straight perforations. 

We can predict from the value of TI the amount by which 
sound waves at the very high frequency of 10 kHz are attenuated in 
passing through the sheet, according to the curve in Figure I5, and 
from this we can develop a curve for the attenuation at lower 
frequencies. (See Part Two, Section II).  

 

 

Figure 15.  Curve of Sound Attenuation at 10,000 Hz vs TI. 

Attenuation = -22.56 log log TI + 0.008vTI + 13.79 
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A value of TI upwards of 10,000 should be the goal in 
choosing a perforated sheet intended for an acoustically transparent 
facing material. This would lead to an attenuation no greater than 
one decibel (dB) at a frequency of 10 kHz, and at lower frequencies, 
the attenuation decreases rapidly: in other words the sheet is 
essentially acoustically transparent over the entire frequency range of 
importance. 

However, it is not essential to insist on very high Transparency 
Index. For relatively high values of TI, the transparency is not 
spoiled very rapidly with decreasing values of TI: with TI as low as 
5000, the attenuation is only 1.5 dB, and with TI = 2000, the loss is 
only 2.5 dB. 

Therefore, there is no harm in shopping around among the 
readily available perforated materials to find one whose TI lies 
between, say 2000 and 20,000. Any value within this range will yield 
acceptably high sound transparency for most sound absorption 
applications. 

NOTE: The value of TI increases as the hole size and the 
number of holes per sq in increases and as the thickness of the 
sheet and the distance between holes decreases. For values of TI 
less than 2000, the sound transparency diminishes rapidly, and 
the perforated metal blocks the passage of sound. 

One can also see from the formula that TI generally increases 
with increasing percent open area P, but NOT if this is achieved with 
larger holes and an increase of the distance (a) between holes. 
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Example 1. 

A perforated sheet of 26 gauge steel with 0.023-in. holes on 
0.054-in. staggered centers leads to the following parameters: 

b = 0.054" 
d = 0.023" 
t = 0.0184" 

A = Sheet area per hole = b2cos 300 
 = (0.054)2 x 0.87 
 = 2.525 x 10-3 sq in; 

Then n = 1/A = 396 holes/sq in; 
 
a = b – d = 0.054 – 0.023 = 0.03"; 
P = [(πd2/4)/A] x 100  
 = [(π x (0.023)2/ (4 x 2.525 x 10-3)] 
    x 100 
 = 16.45%. 

We calculate the Transparency Index by two methods; first by: 

TI = nd2/ta2 
 = [396 x (0.023)2/0.0184 x (0.03)2 
 = 12,650; 
 
or alternatively by: 

TI = 0.04P/πta2 
 = [0.04 x 16.45/π x 0.0184 x (0.03)2 
 = 12,648. 

The two values of TI agree very well. The sound attenuation at 
10 kHz is only 0.9 dB. 

b = 0.054" 
d = 0.023" 
t = 0.0184" 

This is what the industry refers to as a standard 
60° staggered pattern 
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Example 2 

We have 16 gauge steel sheet, with 0.066" holes on 0.125" 
staggered centers. Then: 

b = 0.125" 
d = 0.066" 
t = 0.0625" 
 
A = (0.125)3 x 0.87 = 13.6 x 10-3 sq in 

n = 1/A = 73.6 holes/sq in 
a = b – d = 0.125 – 0.066 = 0.059" 
P = [π(0.066)2/4 x 13.6 x 10-3] x 100 
 = 26.16%  
 
TI = [73.6 x (0.066)2/0.0625 x (0.059)2] 
 = 1474; 
 
or: 
 
TI = [0.04 x 25.16/π x (0.0625) x (0.059)2] 
 = 1472. 

Again, the agreement between the two values of TI is very 
good. 

But notice that the 10-kHz-attenuation has increased to 2.9 dB, 
much more than the attenuation of Example 1, despite the fact that 
the open area for this example is 53% greater than in the earlier case! 
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Example 3 

Again, we have 16 gauge steel, but with 7/64" holes on 3/16" 
staggered centers. 

b = 0.1875" 
d = 0.109" 
t = 0.0625" 
 
A = (0.1875)2 x 0.87 
 = 30.6 x 10-3 sq in 
 
n = 1/A = 32.7 holes/sq in 
a = b – d = 0.0785" 
P = [π(0.109)2/4 x 30.6 x 10-3] x 100 
 = 30.49% 

Then: 

TI = [32.7 x (0.109)2/(0.0625) x (0.0785)2] 
 = 1009; 
 
or: 
 
TI = [0.04 x 30.49/π x (0.0625) x (0.0785)2 
 = 1008. 

Here, even with a percent open area greater than 30%, the 10-
kHz-attenuation has increased to 3.3 dB. 
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You may wonder, then, why it would not ALWAYS be best to 
choose the most transparent possible material. 

We have illustrated by the preceding examples that, generally 
speaking, perforated sheets with small holes close together give the 
greatest transparency; but for practical reasons, very tiny holes 
should be avoided because they may get clogged with dust or filled 
with paint when the sheet is repainted. 

Perhaps more important, very finely perforated sheets tend to 
be fragile and are much more expensive to manufacture. 

Therefore, it is sometimes best to choose the gage of the metal 
first, based on cost, availability or other reasons; then choose the 
possible hole size, and jockey the other parameters to achieve the 
desired transparency. 

IMPORTANT NOTICE TO USERS AND SPECIFIERS 
OF PERFORATED METALS 

At this point, large-scale users of perforated metals are 
probably reaching for their hand-held calculators to find out the 
values of TI for their most popular products. 

DON'T BOTHER! Instead, look at Table 1 on page 37, 
where the calculations are already done for some commonly 
produced perforated sheets. 

NEXT, DON'T PANIC! You will immediately notice that 
many popular products have values of TI that are nowhere near 
the 10,000 recommended above for perfect acoustic 
transparency. 

No matter. Most acoustical problems are concerned with 
frequencies in the mid-range of 1000 – 4000 Hz. And a glance 
ahead at Figure 21 (Page 32) will assure you that practically any 
common perforated metal is nearly totally transparent to sound 
at those frequencies and below. 

So why the emphasis on performance at 10,000 Hz in the 
Transparency Index? The answer is that a useful distinction in 
the transparency of perforated metals is possible only at very 
high frequencies. For example, if we decided to rate our 
Transparency Index at 1000 Hz, say, this would be no good at all, 
because all the samples would get the same (nearly perfect) 
rating. 

We concentrate here on the 10,000 Hz frequency so that 
people who are interested in making distinctions in transparency 
can do so meaningfully. 

In all cases, it is important to match the perforated product 
to the specific needs of the problem at hand. 
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IV. The Tuned Resonant Absorber Approach 

A. Perforated Metal Sheet With Properties Chosen to 
Target a Limited Range of Frequencies for Optimum 
Sound Absorption 

In the transparency application discussed above, the function 
of the perforated metal was to act as a protective covering for 
something else: it must get out of the way and let some other 
material do its acoustic job. 

Now we consider an application where the perforated metal 
takes an active part in determining the acoustical properties of the 
treatment.  

In many noise control applications, the problem is to reduce 
noise that occurs only in a limited range of frequencies. 

For example, an enclosure around a power transformer must be 
especially effective at a frequency of 120 Hz (which is the most 
prominent noise component of the 60-cycle line frequency). 

Or, the absorptive lining for the compressor inlet or the 
exhaust in a jet engine should be most efficient in absorbing sound at 
the blade passage frequency of the rotor, about 2000 Hz. 

One of the great advantages of perforated metal is that it can 
be used as an element in a "tuned resonant sound absorber" to 
provide remarkably high sound absorption in the targeted frequency 
range without requiring a large amount of spacer absorptive material. 

Naturally, it sacrifices high absorption efficiency at 
frequencies outside this range. 

In this application, the perforated metal is used in combination 
with a trapped layer of air, in order to modify the acoustical 
performance of the absorptive material. This is done by setting up an 
acoustical resonance condition, which concentrates the sound 
absorption into a particular frequency range of special interest. It 
works as follows: 



Page 22 of 76 

All resonant devices have a preferred frequency of operation. 
For example, a ball suspended on a rubber band oscillates at only one 
frequency, when disturbed: that frequency is determined only by the 
mass of the ball and the springiness of the rubber band. 

In a resonant sound absorber, the oscillation involves the 
motion of air particles, in and out of the holes in the metal sheet, in 
response to an incident sound wave. The preferred frequency of this 
oscillation is determined by the mass of the air in the perforations 
and the springiness of the trapped air layer.  

At that resonance frequency, the air moves violently in and out 
of the holes, which pumps the air particles back and forth vigorously 
within the adjacent sound absorptive layer. There, the acoustic 
energy (carried by the back-and-forth motion of the air particles) is 
converted by friction into heat and is thereby removed from the 
acoustical scene.  

The practical advantage of the tuned resonant sound absorber 
is this: we have seen (page 11) that it requires a six-inch layer of 
sound absorptive blanket if we wish to attenuate sound effectively at 
low frequencies. Yet, as we have noted above, the treatment of a 
power transformer requires maximum absorption around 120 Hz. 
The one-inch layer of glass fiber (shown in the earlier figure on page 
11) is only about 5% efficient at that frequency. 

But the use of perforated metal to make a resonant sound 
absorber especially tuned to 120 Hz can achieve efficient sound 
absorption at that frequency without requiring so much space and 
with only a thin layer of absorptive material. 

The first clue, to help us decide whether the resonant absorber 
will be the best approach, is found by listening to the noise. If there 
is a clearly perceptible pure tone or a prominent frequency (a squeal, 
hum or whine, as opposed to a whoosh or roar, like a waterfall), this 
is a good indication that the disturbing noise is concentrated in a 
limited frequency range, and a tuned resonant sound absorber is 
called for.  

The problem now is to pinpoint that frequency fR where the 
maximum sound absorption is desired.  

Here one can sometimes rely on the manufacturer's 
information about the noisy device in question.  

Alternatively, one would make a frequency analysis of the 
noise, using a Sound Level Meter with a set of frequency filters, as 
described above (page 6). 

Figure 16. Section through a tuned 
resonant sound absorber. 

Perforated Metal 
Sheet 
Sound Absorptive 
Layer 
Air Layer Trapped 
Behind the Facing 
Solid Backing 
(Wall or Ceiling) 



Page 23 of 76 

B. Calculating The Dimensions Of The Tuned Absorber To 
Give The Desired Resonance Frequency 

Having determined the desired frequency fR of maximum 
absorption for the tuned absorber, the next step is to calculate the 
required dimensions for the various elements, in order to make the 
absorber resonate at the desired frequency.  

For this purpose, we use the nomogram on p. 24, where:  

fR = resonance frequency (Hz); 

h = distance between the perforated sheet and the solid wall, in 
inches (see sketch, p. 22); 

e = effective "throat length" of the holes; it is given by: 

e = t + 0.8d, 

where t is the sheet thickness and d is the hole diameter, in inches; 

P = percent (not fractional) open area of the sheet. 

For round holes, staggered: 
 P = 0.9 (d/b)2 x 100%; 

For round holes, straight: 
 P = 0.8 (d/b)2 x 100%, 

where b is the on-center spacing of the holes and d is the hole 
diameter, both in inches. 

[See below, p. 30, for an Important Note qualifying this design 
procedure.] 
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Figure 17. Nomogram for calculating the resonance frequency, with the graphical constructions 
for Examples 4, 5 and 6. A "clean" version of this Nomogram is included at the back of this 
booklet, to be copied and used as a worksheet for future design problems. 
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Example 4:  Determining the Resonance Frequency for an Absorber 
of Specified Dimensions. 

Suppose that we have a sheet of 16 gauge sheet metal, 
perforated with 1/8-in holes, staggered at 3/8-in on-center (about 8 
holes/sq in), which is used as a facing for a glass wool blanket 3/4-in 
thick, against a solid wall. Determine the resonance frequency.  

For this example: 

b = 0.375"; 
d = 0.125"; 
t = 0.0625"; 
h = 0.75"; 
e = 0.0625 + 0.8 x 0.125 
 = 0.1625; 
p = 0.9 (0.125"/0.375")2 x 100 
 = 10% 

We begin by locating the points on the nomogram 
corresponding to e = 0.16" and P = 10% and connecting these points 
with a straight line. Mark the point where this line crosses the 
unnumbered "m"-scale. Now connect that point with the point on the 
"h"-scale corresponding to the absorber depth, h = 0.75". Read the 
resonance frequency where this line crosses the fR-scale: 2000 Hz. 

This would be a suitable structure for the jet engine duct lining 
mentioned above. 
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Example 5:  To Design a Tuned Resonant Absorber to Resonate at a 
Specified Frequency. 

Suppose that we want a structure with a resonance frequency 
of 120 Hz, to be used as an absorptive enclosure for a large power 
transformer.  The available space behind the perforated metal sheet is 
4" and the most readily available sheet stock is 0.125" thick, with 
staggered pattern.  Determine the required hole size and spacing, and 
the percent open area.  We are given: 

fR = 120 Hz; 
h = 4"; 
t = 0.125". 

What we must do, given the values for fR, t and h, is to choose 
a combination of d and P that will satisfy the nomogram, as follows:  

Connect the points corresponding to h = 4" and fR = 120 Hz 
with a straight line, continuing it across to intersect the "m"-scale. 

Now, as a first guess, let us try perforations ¼" in diameter. 
With t = 0.125" and d = 0.250" we have: 

e = 0.125 + 0.8 x .250 = 0.325" 

So we now connect the point corresponding to e = 0.325" to 
the point found above on the "m"-scale, and continue it to intersect 
the P-scale at 0.4%. 

The plate area per hole is: 

A = [(π x d2 x 100)/(4 x P) 
 = (π x (0.25)2 x 100)/(4 x 0.4) 
. = 12.27 sq in/hole; and 
 
n = 1/A = 0.081 holes/sq in 

Finally, the spacing of the (staggered) holes is (See sketch in 
Example #1, p.17):  

b = (A/cos 30°)1/2 = (12.27/0.87)1/2 
 = 3.76" 
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The reader may be surprised that we end up, this application, 
with a perforated sheet having ¼" holes at a spacing as great as 3.8" 
on center, and with only 0.08 holes/sq in. 

But it is important to realize that, in this case, we are NOT 
trying to achieve the maximum exposure of the sound absorptive 
blanket, as we did in the "transparency approach". In fact, that 
approach would be effective in this application only if we could 
afford a six-inch blanket of glass fiber, in order to get high 
absorption efficiency at the low frequency of 120 Hz due to its 
thickness alone .  

Instead, we are aiming at a combination of perforation pattern 
and absorber depth (h) that will encourage maximum air particle 
motion through the absorptive material at the frequency of interest, 
by deliberately creating a resonance at that frequency. (See the 
further discussion of the significance of material thickness for low-
frequency absorption, in Appendix A). 

Alternative combinations of plate thickness, hole size and 
percent open area that would achieve the same resonance frequency 
are illustrated in two further examples. 
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Example 6: 

Suppose we have the same transformer problem, but have only 
3" of available depth and a sheet thickness of ¼":  

fR = 120 Hz; 
h = 3"; 
t = 0.250" 
 
Try d = 0.500"; then: 
 
e = 0.250 + 0.8 x 0.500 = 0.65" and 
 
we find; 
 
P = 0.61% 
A = 31968 sq in/hole, and 
n = l/A = 0.03 holes/sq in. 
 
The hole spacing is; 
 
b = (32.19/cos 30°)1/2 = 6.1". 
 

Example 7: 

If we repeat Example 6 with 1" holes, we have: 

 
e = 0.250 = 0.8 x 1 = 1.05" 
 
from which we find: 
 
P = 1.0%; 
a = 78.54 sq in/hole; 
n = 0.013 holes/sq in; and 
b = 9.5". 

All these variations of perforation pattern in Examples 5, 6 and 
7 lead to the same resonance frequency of 120 Hz, to match the 
dominant frequency of the transformer noise. 
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C. Design Refinements 

Is there any way to decide which of these three treatments (or, 
perhaps, some other variant) will yield the maximum amount of 
absorption at that frequency?  

And is there any especially effective way of disposing the 
various elements of the resonant absorber to maximize the 
absorption?  

Once the choice of resonance frequency is made, the actual 
absorption characteristics can be changed according to the choice of 
the absorptive material in the cavity and also where the material is 
located in the cavity, as shown in the sketch of Figure 18. 

In each case, a is the perforated sheet, b is the sound absorptive 
material and c is a rigid backing, such as a wall. 

The sound absorptive behavior for these three conditions is 
shown in Figure 19. The curve with the open circles represents 
Condition I; that with the filled circles, Condition II; and that with 
the x's, Condition III. 

 

Figure 19.  Curves showing sound absorption vs frequency for the three 
mountings. 

Obviously, the most effective arrangement is that with the 
fibrous material located near the perforated sheet. The worst 
condition is with the absorptive material close to the wall. 

Figure 18. Tuned resonant sound 
absorbers, showing three possible 
ways to mount the absorptive 
material in the airspace.  
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Important Note: 

 

It also makes a very important difference whether the airspace 
behind the sheet is continuous or divided into small cells by means 
of partitions: 

When the airspace is continuous, the behavior of the absorber 
changes greatly at different angles of incidence of the sound. As the 
sound direction changes from perpendicular to the surface of the 
absorber (angle of incidence = 0º) to grazing incidence (90º), the 
resonance frequency changes drastically, rising away from the 
intended frequency to as much as three octaves higher. In addition, 
the bandwidth of frequencies within which the high values of sound 
absorption occur gets smaller and smaller as the angle of incidence 
tends toward grazing.  

By contrast, with the partitioned back structure, not only does 
the resonance frequency remain the same as the angle of incidence 
increases, but the bandwidth for high sound absorption actually 
becomes broader toward grazing incidence.  

Finally, there is the effect of the density of the fibrous material 
used to fill the airspace.  

If it is too loose, the sound passes right through the material 
without being absorbed. But if it is too dense, the sound is reflected 
and cannot penetrate the material to be absorbed.  

More detailed guidance concerning the trade-offs between 
perforation patterns and depth of airspaces, as well as on the choice 
of sound absorptive cavity filling, will be presented in PART TWO, 
below. 

Figure 20. Sketch showing 
partitioned and non-partitioned 
airspace behind perforated metal 
facing. 
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ACOUSTICAL USES FOR 
PERFORATED METALS: 

PART TWO:  THE APPLICATIONS 

I. Introduction 

In Part One we were introduced to the principles by which 
perforated metals are able to serve particularly well in acoustical 
applications, particularly in noise control treatments.  

In Part Two, we show how to use those concepts in a 
quantitative way, either to analyze an existing application or to 
design a new treatment in order to meet certain specified 
requirements.  

II. The Transparency Approach  

We begin with a closer look at the "Transparency Approach" 
in the use of perforated metals. 

We learned in Part One how to define a Transparency Index as 
an indicator of how easily sound can pass through a particular 
sample of perforated metal at high frequencies (see page 14). 

We now look at what this means in practice. 

 

Subway station in Vienna; note the perforated metal facing 
for the sound absorptive ceiling treatment. 
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A. Sound Attenuation At High Frequencies 

The following figure presents laboratory measured data that 
indicate how high-frequency sounds are attenuated, in passing 
through samples of perforated metal having different values for the 
Transparency Index (TI). The horizontal scale gives the frequency in 
Hz (cycles per second); the vertical scale gives the attenuation in 
decibels (abbreviated: dB). 

It is evident that at frequencies below about 1000 Hz there is 
little attenuation: the sound passes right through most sheets with no 
loss whatever. 

 

Figure 21. Sound attenuation vs frequency for samples of perforated metal 
having different TI. 

But as the frequency increases, there is more and more 
attenuation. ...meaning that the sound is reflected from the sheet and 
fails to get through to reach the acoustical treatment that lies behind.  

This condition is more severe, the lower the value of TI. For a 
sheet with TI = 1500, the attenuation of sound at 16,000 Hz is as 
much as 4.75 dB; for TI = 12,000, the loss is only 1.5 dB at the same 
frequencies. 
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Sometimes the acoustical treatment that lies behind the sheet is 
a hard, sound-diffusing surface, intended to break up the sound 
waves and reflect them back to the room, as in a concert hall. Then 
this attenuation must be counted twice: once on the way in and once 
on the way back.  

B. Access To The Sound Treatment  

On the other hand, if the acoustical treatment is in- tended to 
absorb the incident sound, then we must determine how much the 
perforated metal degrades the intrinsic absorptive properties of the 
material installed behind it, by preventing the sound from getting 
access to the absorptive material.  

For this purpose, we introduce the Access Factor (AF), 
illustrated in the following figure for the same samples of perforated 
metal that we saw above, in Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Curves showing the Access Factor vs frequency for the same samples 
of perforated metal as in Fig. 21. 
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In general, the Access Factor (AF) at any frequency is related 
to the Attenuation (A) at that frequency by the following formula: 

AF = 10-(A/10) 

C. How To Use The Access Factor  

In order to explain how to use the Access Factor, let us recall 
the definition of sound absorption coefficient, used to characterize 
the sound absorption efficiency of an acoustic treatment. We saw in 
Figure 12 that a 1-inch blanket of glass fiber material absorbs about 
20% of the incident sound energy at a frequency of 250 Hz, about 
65% at 500 Hz, about 87% at 2000 Hz and about 99% at 4000 Hz. 
On the other hand, a 6-inch layer absorbs about 99% of the incident 
energy at all frequencies. 

All of these numbers assume no covering over the sound 
absorptive material. But when we cover the material with perforated 
metal, we must expect some degradation of the sound absorptive 
efficiency. The amount will depend on the frequency, of course, but 
also on the choice of the perforated metal.  

The Access Factor is a measure of this degradation: it 
describes how much "access" the sound wave has to the underlying 
acoustical treatment. 

If the Access Factor is 1.0, there is complete access and 100% 
of the sound energy can get through. But if the Access Factor is 0.50, 
then only half the sound energy can pass through; the other half is 
reflected from the surface of the sheet and never reaches the acoustic 
treatment at all.  

Therefore, in order to find the effective sound absorption 
efficiency of an acoustical material covered with perforated metal 
sheet, we simply multiply the sound absorption coefficient of the 
basic material at each frequency by the corresponding Access Factor 
for the metal sheet.  

For example, suppose that we cover the 1-inch glass fiber 
material mentioned above, having a coefficient of 0.99 at 4000 Hz, 
with a perforated metal sheet having TI = 1500, corresponding to an 
Access Factor at 4000 Hz of 0.82. Then the effective sound 
absorption coefficient of the combination is 0.99 x 0.82 = 0.81. The 
perforated covering has degraded the absorptive performance of the 
original material at 4000 Hz by 19 percentage points. 

Of course, perforated sheet with a TI of only 1500 is a poor 
choice for this application in the first place. The whole point of the 
acoustical design in the "transparency approach" is to find a sheet 
with as high a value of TI as possible, consistent with the other 
requirements of the project.  

It is clear from the figures given above that if we choose a 
sheet with acceptable transparency at 10,000 Hz (that is, small A and 
high AF), then everything is much better at the lower frequencies. 
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The following nomogram allows you to go directly from the 
calculated value of TI to either the Sound Attenuation or the Access 
Factor, both at 10,000 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Nomogram for calculating the Attenuation and the Access 
Factor (10 kHz) 

The procedure is as follows: 

Enter the lower horizontal scale with the value of TI for your 
perforated sheet and move directly upward to intersect the lower of 
the two curves. Move to the left from this intersection point until you 
strike the vertical scale, where you can read the attenuation at 10,000 
Hz in decibels. 

Alternatively, if you want the Access Factor, you can move to 
the right or left from the first intersection point to intersect the upper 
slanting line, then move upward from the second intersection point to 
strike the upper horizontal scale, where you can read the Access 
Factor at 10,000 Hz for the perforated sheet. (See Example 8, next 
page.) 
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The mathematical formulas corresponding to the curves in this 
nomogram are, respectively: 

A(10KHz) = –22.56 log log (TI) + 0.008√TI + 13.79 dB 

and 

AF = 10-(A/10). 

The first formula is valid for values of TI up to 50,000, but 
only for a frequency of 10,000 Hz; the second formula is generally 
valid for any frequency for which the value of A is known. 

Example 8: 

Suppose you have a perforated metal sheet with TI = 4000, 
used as a covering for a sound absorptive glass fiber blanket. What is 
the effect of the covering?  

Enter the lower horizontal scale of Fig. 23 at TI = 4000, move 
upward to strike the lower curve, then move left to find an 
attenuation at 10,000Hz of 1.8 dB. Next, move to the right from the 
first intersection point to intersect the upper slant line, then upward 
from this point to the horizontal scale to find an Access Factor of 
0.66. With this sheet covering an absorptive material, you will 
realize only 66% of the intrinsic absorption performance of the glass 
fiber material at 10,000 Hz.  

NOTE: See Appendix C for an important technical qualification 
to the use of the Access Factor, as prescribed above.  

NOTE: Full-sized, clean versions of Figs. 21, 22 and 23 are 
included in Appendix D at the back of this booklet, to be copied 
and used as worksheets. 

Table 1 presents calculated values of the TI, the Attenuation 
(A) and the Access Factor (AF) at 10,000 Hz, for a group of the most 
commonly manufactured perforated metals. 
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Table 1: 

Acoustical Properties of Commonly-Manufactured Perforated Metal Products 

 

Item  d (in.)  b (in.)  t (in.)  n (holes/in.2)  P (%)  a (in.)  TI  A(10kHz)  AF(10k)  

1.  0.080  7/64” 
= 0.109 

 0.030  97  48.5  0.029  24605  0.55 dB  0.88  

2.  0.100  5/32” 
= 0.156 

 0.030  47  37.2  0.056  4996  1.54  0.70  

3.  0.100  3/16” 
= 0.188 

 0.030  33  25.9  0.088  1420  2.84  0.52  

4.  0.125  3/16” 
= 0.188 

 0.030  33  40.0  0.063  4330  1.67  0.68  

5.  0.125  1/4” 
= 0.250 

 0.030  18  22.5  0.125  600  3.97  0.40  

6.  0.156  1/4” 
= 0.250 

 0.078  18  36.0  0.094  636  3.89  0.41  

7.  0.063  1/8” 
= 0.125 

 0.037  74  22.5  0.062  2065  2.41  0.57  

8.  3/16” 
= 0.188 

 5/16” 
= 0.313 

 0.060  12  32.5  0.125  445  4.42  0.36  

                    
a = b – d; TI = nd2/ta2; A(10) = –22.56 log log (TI) + 0.008√TI + 13.79 (dB); AF = 10–(A/10)  
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D. A Case History Illustrating The "Transparency" Approach 

 

A typical application where widespread use is made of 
perforated metal is in the acoustical treatment of large "hush houses" 
for the run-up and testing of jet engines.  

In many cases these hush houses are large enough to 
accommodate an entire airplane for testing.  

Since the jet engines on large aircraft are among the noisiest of 
today's noise sources, it would be intolerable (and a great hazard to 
hearing) if people had to work in buildings with these engines, unless 
very effective methods are introduced for controlling and abating the 
jet noise.  

Among the most effective methods is the treatment of the 
walls and/or ceiling with deep, sound-absorptive material (typically 
glass fiber blankets or board), covered with perforated metal for 
protection and ease of maintenance. 

Example 9: 

If we must choose a very economical wall treatment, it might 
consist of a 1.5-inch layer of glass fiber board, faced with a 
perforated metal that has been chosen for the best acoustical 
transparency consistent with high structural integrity and availability. 

For this purpose one might select a stock perforated sheet of 
16 gauge steel (t = 0.0598") with 3/16" holes (d = 0.188") on 5/16" 
centers (b = 0.313"). These dimensions lead to n = 12 holes/ sq in, P 
= 32.5% and a = b – d = 0.125". We calculate the Transparency 
Index to be: 

TI = nd2/ta2 
= 12 x (0.188)2/0.0598 x (0.125)2 
= 445 

We can already anticipate from this very low value of TI that 
we will get some degradation of the performance of the glass fiber 
board; but the sheet dimensions are in this case determined by 
structural requirements and availability, so we may not have a better 
choice. 

From the nomogram of Figure 23, above (p. 35, or Appendix 
D), we find the attenuation at 10,000 Hz to be 4.4 dB and the 
corresponding Access Factor to be 0.36. 

We can interpolate in Figure 22 (p. 33, or Appendix D), which 
gives the curves of Access Factor vs frequency, in order to estimate 
the Access Factor at octave band frequencies down to 500 Hz, as 
follows. 

Figure 24. "Hush-house", designed 
to confine the noise of jet engine 
tune-ups. 
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Table 2 gives the sound absorption coefficient at various 
frequencies for the basic fiber board, as well as the (estimated) 
Access Factors for the perforated metal, and finally the effective 
sound absorption coefficients for the composite structure: 

Table 2: Effect of perforated metal sheet with a low value of TI 
on the absorption coefficients for glass fiber board. 

 

 Freq  α  AF  αeff  

 125  0.18  1.0  0.18  
 250  0.40  1.0  0.40  
 500  0.65  1.0  0.65  
 1000  0.90  0.98  0.88  
 2000  0.95  0.90  0.86  
 4000  0.92  0.75  0.69  
 8000  0.88  0.49  0.43  
 

Comparing α and αeff (see sketch), it is evident that the 
perforated metal covering is hindering the sound absorption at high 
frequencies. But this may not be a serious drawback, if there is not 
much high-frequency energy in the spectrum to be controlled in the 
first place. 

Other acoustical applications that use large quantities of 
perforated metals as facings for sound absorptive treatments include 
subway tunnels and stations, and street and highway tunnels. Since 
all of these treatments are trying to cope with noises having 
broadband spectrums, the acoustical design approach should be the 
same in all cases: namely, the Transparency Approach. (See Section 
IV below). 
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E. Special Considerations: Non-Circular Perforations and 
"Self-Resistance" Of The Perforated Metal 

All of the discussion above has dealt with perforated metal 
sheet having circular holes, in either straight or staggered patterns. If, 
instead, the holes are square, we can use the same calculations to a 
good approximation if we assume an effective hole diameter d' that is 
equal to (4/π)1/2 L = 1.13 L, where L is the length of the side of the 
square perforation. Use the calculation for the straight pattern.  

Another somewhat more complicated difficulty arises when, in 
an attempt to achieve a high value for the Transparency Index, we 
end up with very small holes. Then, not only is there a risk that the 
holes will be clogged upon being repainted, but there may even be 
unwanted energy loss as the air pumps in and out of the tiny holes... 
just as if it were lost by friction within a sound absorptive blanket.  

This condition would cause no harm if our purpose is to use 
the perforated metal as a facing for an absorptive blanket: it would 
only add a bit more to the total sound absorption.  

But if our goal is to provide a transparent room surface so that 
sound can pass freely through and back, then we do not want any 
sound absorbed inadvertently, along the way.  

We must, therefore, check our sheet dimensions to be sure that 
the material is sufficiently sound transparent without adding 
unwanted sound absorption.  

But the further discussion of this problem is slightly 
complicated; it must wait until we have considered the "Tuned 
Absorber" application, below. (See Section III, C.3). 
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III. Resonant Sound Absorbers 

In Part One, we learned how to analyze an acoustical treatment 
in which perforated metal sheet is mounted over an air space 
containing sound absorptive material, in order to make a "Tuned 
Resonant Absorber".  That is, by the use of a nomogram, we could 
determine the frequency of resonance where the sound absorption 
would be especially great; or we could choose the dimensions of the 
treatment to target a particular frequency range of interest.  

Nothing was said there about how much sound absorption 
would be achieved at the resonance frequency nor about how broad 
the targeted frequency range would be.   

We take up these matters here. 

A. Sound Absorption At The Resonance Frequency: αmax 

In a tuned resonant sound absorber, the sound absorption 
reaches a maximum value, αmax, at the resonance frequency, fR, 
falling off to lower values at higher and lower frequencies.  

We can control this maximum value of absorption by the 
choice of the sound absorptive material with which the airspace is 
filled.  Usually, that material will be a kind of porous blanket or 
board, made of glass fiber or mineral fiber.  

The maximum value of absorption depends only on the flow 
resistance of that material, and not on any of the physical dimensions 
of the sound absorptive treatment (such as the depth of airspace, 
perforation diameter, percent open area, etc.). 
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1. Flow Resistance, Flow Resistivity , and Resistance Ratio 

The flow resistance of a piece of material tells us how easy it 
is for air to move through the material. The flow resistance depends 
upon the density of the fibrous material (lb/sq ft) and the fiber 
diameter: generally, the heavier the blanket and the finer the fibers, 
the higher the flow resistance.  

And, naturally, thicker layers have more flow resistance than 
thin ones.  

With experience, one can even learn to make a pretty good 
guess at the flow resistance of a material by seeing how hard it is to 
blow one's breath through the material.  

But for our purposes, we will rely on the measured values of 
flow resistance for some commonly available fibrous materials.  

There's good news and bad news here, however. The bad news 
is that the manufacturers of fibrous materials don't worry much about 
the flow resistance of their products, so it's not always easy to find 
accurate information on this parameter.  

The good news is that the acoustical behavior of our tuned 
resonant sound absorbers isn't critically dependent on the exact value 
of the flow resistance of the filling in the air cavity. We can miss the 
design goal quite a bit and it won't make much difference.  

But first we have to discuss how to characterize the flow 
resistance of a layer of material. It is usually done by means of a 
resistance ratio that tells how much harder (or easier) it is for the 
sound pressure to push air through the layer in question than to push 
it through the air itself.  

That probably sounds peculiar, because it may not have 
occurred to you that sound actually encounters some resistance in 
moving through the air. In fact, there is a "characteristic impedance" 
that relates the pressure in a sound wave to the corresponding 
particle velocity in the air: it is given by the product of the density of 
the air, ρ (gm/cc), and the propagation velocity of sound, c (cm/sec):  

Characteristic Impedance = ρc 

= 41 cgs rayls. 

We always relate the flow resistance, R, of a layer of material 
to the characteristic impedance of the air, ρc, by forming the 
resistance ratio R/ρc.  

If a layer of material has a flow resistance such that R/ρc = 1, 
then a sound wave will not recognize the existence of that material 
when it is encountered, because it can't tell the difference between 
this material and air. 
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If the value of R/ρc is either substantially greater or less than 
unity, then the sound wave will "notice" the layer, and tend to be 
reflected from it rather than entering and passing through it. 

Important distinctions: 

Every fibrous material has a property of its own called the 
flow resistivity , Ξ which gives the flow resistance per inch of 
thickness. (We are talking now about the material, itself, not a 
particular blanket of that material.)  

Thus, if a certain type of glass fiber has a flow resistivity Ξ = 
60 cgs rayls/inch, then a 2" blanket of the material will have a flow 
resistance of R = 2 x 60 = 120 cgs rayls. And for this blanket the 
value of R/ρc = 120/41 = 2.93. 

Remember: the flow resistance Ξ is a property of the material, 
while the flow resistance R is a property of a blanket of the material 
with a particular thickness. The resistance ratio R/ρc relates the flow 
resistance of a given blanket to the characteristic impedance of the 
air.  

Now, at last, we are in a position to consider the maximum 
amount of sound absorption achieved at the resonance frequency of 
our tuned absorber. As we mentioned above, it depends only on the 
value of R/ρc for the filling in the airspace: 

αmax =  1  
  ½ + ¼ (R/ρc + ρc/R) 

Table 3 gives values for αmax (at the resonance frequency) 
corresponding to different values for R/ρc of the cavity filling: 

Table 3: Maximum attainable sound absorption (at the resonance frequency), as a 
function of the flow resistance ratio of the filling material. 

 

  R/ρc   αmax    
         
  0.1   0.33    
  0.2   0.56    
  0.5   0.89    
  0.7   0.97    
  1.0   1.00    
  1.5   0.96    
  2.0   0.89    
  3.0   0.75    
  4.0   0.64    
  5.0   0.56    

As we said above, the maximum absorption coefficient at 
resonance in a tuned absorber is not very sensitive to the filling 
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material: any value of R/ρc from 0.5 to 2.0 will yield a value of αmax 
of 0.89 or greater. 

As a practical matter, Table 4 presents, for a number of 
currently manufactured Owens-Corning Fiberglas products, the value 
of Ξ (cgs rayls/in.), the value of R (cgs rayls for a 1/2" layer) and the 
value of αmax at resonance for a tuned resonator filled with such a 
layer: 

Table 4:  Acoustical properties of typical OCF Fiberglas blankets and boards. 

 OCF  Ξ  R/ρc (1/2”)  αmax  
           
  700   20  0.24  0.63  
  701   26  0.32  0.73  
  702   38  0.46  0.87  
  703   60  0.73  0.98  
  704   44  0.54  0.91  
  705   77  0.94  1.00  
  PF 105   250  3.05  0.74  
  TIF   18  0.22  0.59  

 

 

 

 

Sound absorptive treatment, covered 
with decorative perforated and drawn 
metal sheet, provides calm acoustical 
environment in the elegant dining 
room of the Scandinavia Hotel in 
Oslo 

 



Page 45 of 76 

2. Absorptive Layer Near A Hard Wall.  

We come now to a complication that we have already 
encountered (without an explanation) near the end of Part One: 
namely, it makes a difference where, within the air cavity, the sound 
absorptive material is placed (See Figures 18 and 19). 

We realize that in order for the absorptive layer to work well, 
turning the sound energy into heat by the friction of the vibrating air 
particles within the fine pores of the material, there must be freedom 
for the air particles to move.  If anything impedes this motion, then 
the energy conversion is less efficient and less sound energy is 
absorbed. 

And that is just what happens at locations near a hard wall: the 
wall itself, being rigid, cannot move with the sound wave, and this 
means that the nearby air particles also cannot move.  Thus, any 
sound absorptive material placed against a hard wall is virtually 
useless, because there can be no air motion within the material to 
dissipate the sound energy. 

Nevertheless, it is common practice to mount sound absorptive 
layers directly against a wall, because it is very convenient to do so.  
We must, however, realize that, in such cases, only the outer one-
third of the thickness of the layer is effective in absorbing sound.  
The rest of the material is simply acting as a convenient support! 

Therefore, the values of R/ρc for the 1/2" layer of material 
given in Table 4, and the corresponding values of αmax, assume that 
this 1/2" layer is mounted near the perforated metal screen with, say, 
an inch of empty airspace behind it. so that the entite 1/2" layer is 
effective. 

If the layer were mounted directly against a hard wall, the 
tabulated values of R/ρc would have to be multiplied by 1/3, and the 
corresponding values of maximum absorption recalculated. 
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3. Resonance Frequencies Achievable With Commonly Produced Perforated Metal Sheets 

Earlier in this booklet (in Table 1, p.37), we considered the 
acoustical performance of commonly produced perforated metal 
products in terms of the Transparency Index, and the corresponding 
Sound Attenuation and Access Factor at 10,000 Hz. Some were 
pretty good, some pretty bad. 

We now consider four of these same materials in terms of the 
resonance frequencies that they would produce if mounted in front of 
a one-inch airspace (the item numbers here are the same as in Table 
1): 

  Item   FR(Hz)    
         
  1   5000    
  4   3800    
  5   3000    
  6   3000    

So here's an odd situation! Using common perforated sheet, 
these "resonant absorbers" all resonate at such high frequencies that 
the resonance phenomenon adds nothing extra to the natural sound 
absorption of, say, a 1/2" layer of glass fiber with no covering at all! 

Moreover, no reasonable depth of airspace behind these sheets 
would decrease the resonance frequency below 1000 Hz; for 
example, samples #5 and #6 would require a 7-inch airspace to make 
fR = 1000 Hz. 

Tuned resonant sound absorbers evidently require somewhat 
out-of-the-way perforation patterns, as we saw in Examples 5, 6 and 
7, pages 26-28. 
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B. The Absorption Bandwidth 

Not only are we interested in the maximum value of sound 
absorption that occurs at the resonance frequency of a tuned 
absorber, but we want to know whether the resonance peak is broad 
or narrow. 

In fact, in designing a tuned resonant sound absorber, we want 
to achieve the required bandwidth. 

As a practical matter, we can characterize the absorption 
bandwidth of a resonant sound absorber by determining the two 
frequencies, f2 and f1 (above and below the resonance frequency, 
respectively) at which the absorption has dropped to half its value at 
resonance. For frequencies below f1 and above f2, the absorption of 
the tuned absorber is relatively insignificant. 

The difference between f2 and f1 is called the "Half-Power 
Bandwidth" because at all frequencies within this band the sound 
absorption exceeds half the (maximum) value at resonance:  

∆fH = f2 -f1; 
 = 2π[1 + (R/ρc)] (h/c) fR

2; 
and 

f1,2 = fR ± (∆fH/2) 

These quantities are shown in Fig. 25. 

   α  =  1  
 αmax 1 + (fR/∆fH)2 (f/fR – fR/f)2 

 

Figure 25.  Bell curve of absorption defining αmax, f1, f2 and ∆fH. 
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Once the resonance frequency fR is chosen, the breadth of the 
absorption curve depends only on (1) the depth of the airspace 
behind the perforated metal and (2) the flow resistance of the filling 
material. 

Assuming that the latter is chosen so as to maximize the 
maximum absorption at resonance, or to suit some other criterion, 
then the airspace depth alone governs the resonance bandwidth. 

If ∆fH is small, the absorption band is narrow, and we target a 
very limited range of frequencies. To absorb a wider band of 
frequencies effectively requires greater depth for the airspace. 

C. Combined Effects of Flow Resistance, 
Filling, and Absorber Dimensions  

Figure 26 will help us understand the respective roles of the 
filling material and the absorber dimensions in determining how the 
absorber behaves. 

R/ρc = 1 
β = 2 

 

Figure 26. Frequency dependence of the absorption 
coefficient of perforated sheet in front of an air 
cushion filled with absorptive material: various 
values for R/ρc and β (see text). 
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The lower part of the figure shows frequency plots of the 
sound absorption coefficient for several tuned resonant absorbers, all 
of which are filled with an absorptive material having R/ρc = 1, but 
with different values for the construction parameter β. 

For the frequency, we use the ratio, f/fR, of actual frequency to 
the resonance frequency, on a logarithmic scale. On such a scale, the 
absorption plots show up as bell-shaped curves, symmetrical about 
the resonance frequency f/fR = 1.  

The parameter β, here, is related to the depth of the absorber 
and to the "half power bandwidth" ∆fH (introduced above) by the 
following two equations: 

β = c/2πfRh; 

The greater the depth of the airspace h, or the higher the 
resonance frequency fR, the smaller the value of β.  

∆fH = (fR/β) [1 + (R/ρc)]. 

The smaller the value of β, or the higher the resonance 
frequency, or the greater the flow resistance of the filling, the wider 
the frequency band over which high sound absorption will occur .  

In the lower part of Figure 26, the choice of R/ρc = 1 causes 
the sound absorption at resonance (f/fR = 1) to be 100% in all cases. 
But smaller values for β lead to absorption curves that are broader; 
and high values for β lead to narrower curves. 

In the upper part of the figure, the value of β is 2 for all the 
curves, but different values for R/ρc are chosen. Again, for R/ρc = 1 
the absorption at resonance is 100%. But for R/ρc = 0.5 and 2.0 the 
absorption at resonance is nearly as great (αmax = 0.89). 

Also, note that values of R/ρc greater than unity lead to 
broader absorption curves, while values less than unity give narrower 
curves. 
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We have seen that the bandwidth of high absorption is 
proportional to the airspace depth, h. If only a restricted depth is 
available, and we wish to achieve reasonably high absorption over a 
wider band, we must design a number of tuned resonant absorbers 
having different resonance frequencies to cover the whole required 
frequency range: 

f2 – f1 = n ∆fH 

in such a way that, for every frequency, a reaches near to αmax 
on at least one partial surface area. 

However, further analysis shows that the necessary 
construction volume remains the same: what we save in depth of air 
cushion must be made up in additional area of absorptive surface. 

In each case, the choice depends on the available space. 
Certainly, it is more expensive to enlarge the treated area than to 
increase the depth of the treatment, so h should be chosen as great as 
the available space will allow. 
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1. The Proper Choice for R 

The choice of flow resistance for the filling material is not 
quite so straightforward as it seemed when we were considering only 
the sound absorption at the resonance frequency. 

Certainly, it would not be favorable to choose R smaller than 
ρc, because then we would decrease both the maximum absorption at 
resonance and the width of the absorption curve (Fig. 26). 

But if R is greater than pc, then again the maximum absorption 
at resonance decreases, but we get a broader curve, which may be 
desirable. 

If we try to optimize both the maximum absorption at 
resonance and the half power bandwidth, by forming their product: 

αmax ∆fH = 2π[4(R/ρc)/(1 + R/ρc)](h/c)fR
2 

we see that it would still be good to choose a large value for R.  

However, even a choice of infinitely high R would yield a 
result for the product that is only twice that for the matching case, 
R/ρc = 1.  And if we make R too great, we invalidate our whole 
theory of resonating absorbers: a too-strongly damped resonator is no 
resonator at all!  

We conclude, then, that a choice of R/ρc around 2 to 3 will 
give the best compromise between a high maximum sound 
absorption at resonance and a broad half power bandwidth.  

2. Further Illustrative Examples  

In Part One, we presented several examples (#4 - #7) in which 
we calculated the resonance frequency for different combinations of 
perforated metal sheet and airspace (pp. 23-28). 

We return to those treatments now to determine the half-power 
bandwidths and to see the effect of different choices of filling 
material.  
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Example 10: 

Example #4 in Part One concerned a sheet of 16 gauge sheet 
metal, perforated with 1/8" holes, staggered on 3/8" centers, as a 
facing for a 3/4" glass fiber blanket against a solid wall. We found 
that the resonance frequency is 2000 Hz. 

We now assume that the glass fiber material has a flow 
resistivity, Ξ = 55 cgs rayls/in; accordingly, R = 3/4" x 55 = 41 cgs 
rayls, and R/ρc = 1.  

We first calculate the maximum sound absorption coefficient 
reached at the resonance frequency:  

αmax = 1/[1/2 + (1/4)(R/ρc + ρc/R)] 
 = 1/[1/2 + (1/4)(1 + 1) 
 = 1.0. 

Next we calculate the half-power bandwidth:  

∆fH = 2π[1 + (R/ρc)](h/c)fR
2 

 = 2π[1 + 1](0.75/13560)(2000)2 
 = 2794 Hz. 

The lower and upper frequency bounds for the half-power 
bandwidth are:  

f1 = fr -(∆fH/2)  
 = 2000 - 1397 = 603Hz 
f2 = fR + (∆fH/2) 
 = 2000 + 1397 = 3397 Hz  

The value of the absorption coefficient at frequencies f1 and f2 
is 0.50 (open triangles). The entire frequency plot of absorption for 
this example is given on Figure 27. 
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Figure 27. Frequency dependence of the absorption coefficients for the tuned 
resonant absorbers of Examples 10-13. 

One-third Octave Band Center Frequencies in Hz (cps) 
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Example 11: 

The next example (Example 5, p. 26) involved a resonator 
tuned to fR = 120 Hz; the available air depth was 4", the thickness of 
the sheet was ? ", and it turned out that a hole diameter of ¼", a 
percent open area of 0.4%, with only 0.081 holes per sq in satisfied 
the nomogram. 

This time let us assume a value of R/ρc = 2 for the filling; then 
the maximum absorption at resonance is (as we already know from 
the table on page 43):  

αrnax = 0.89. 

The half-power bandwidth is:  

∆fH = 2π[1 + 2] (4/13560)(120)2 
 = 80 Hz. 

Then  

f1 = 120 – 40 = 80 Hz 
f2 = 120 + 40 = 160 Hz 

and at these two frequencies, the absorption coefficient is 
0.89/2 = 0.44. The entire frequency plot for this example is also 
given on Figure 27. 
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Example 12: 

The next example (#6, page 28) was the same as the previous 
example except that the airspace was limited to 3”. 

In order to compensate for this reduced airspace, we choose a 
higher value of the flow resistance of the filler:  R/ρc = 3. 

Then (again from Table 3 on page 43) 

αmax = 0.75, 

and: 

∆fH = 2π [1 + 3](3/13560)(120)2 

 = 80 Hz. 

Because of our compensation with the higher flow resistance, 
the half-power bandwidth remains the same.  But in this case, the 
sound absorption coefficients at f1 = 80 and f2 = 160 Hz are only 
0.75/2 = 0.38 (filled squares in Figure 27). 

Example 13: 

The final example (#7, page 28) achieved the same resonance 
frequency of 120 Hz with 1” holes, a percent open area of 1.0%, with 
a hole spacing of 9.5” and 0.013 holes/inch. 

This time, let us assume R/ρc = 1, so again the absorption 
coefficient at resonance is 1.0. 

The half-power bandwidth now is: 

∆fH = 2π [1 + 1](3/13560)(120)2 

 = 40 Hz, 

which leads to values for f1 and f2 of 100 and 140 Hz, respectively; at 
these frequencies the value of α is 0.5 (open squares in Figure 27). 
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3. "Self-Flow-Resistance" of Fine Perforated Metal Screens 

We mentioned above, that, although it is desirable, from the 
point of view of trying to achieve high transparency from perforated 
sheet, to aim for tiny perforations closely spaced, there is a danger in 
over-doing it. 

First, if the sheet is painted, the fine holes may get clogged and 
this would spoil the transparency altogether.  

Second, if the holes are fine enough, they will act like the fine 
pores in a glass fiber absorptive blanket, and may introduce 
unwanted sound absorption. This would be particularly undesirable if 
all we want from the perforated metal is acoustical transparency.  

Therefore, it is a good idea, once you have finished your 
design for acoustical transparency, to follow through with a 
calculation of the self-resistance of the perforated sheet that you have 
chosen, and calculate the absorption coefficient of the sheet without 
any filling. This is explained below.  

Considering that there is a large range of possible perforation 
patterns, there are two extremes that we could consider, in 
calculating the self-resistance of the sheet. It depends on whether the 
holes are wide or narrow, compared with the length of the so- called 
"viscosity waves" that cause the unwanted absorption.  

Since the theory for coping with "in-between" situations is not 
developed, we must calculate both values and use the higher of the 
two results. In addition, there is an end correction to be taken into 
account, as in our calculations of resonance frequency, above.  

So our self-resistance is given by:  

Rself = Ro + 2∆Ro 

where the value for Ro is the larger of the two following formulas, 
depending on whether the flow resistance is dominated by (1) 
boundary layer effects or (2) laminar flow:  

R01 = 4.24(b2t/d3) √f x 10-3 cgs rayls 

or 

R02 = 2.88(b2t/d3) √f x 10-3 cgs rayls 

The value for 2∆R0 is given by:  

2∆R0 = 4.19(b2/d2) √f x 10-3. 
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Example 14: 

To take a rather extreme case, let us look at the effect of the 
self-resistance, at a frequency of 1000 Hz, of a sheet of 0.1” metal 
with 0.16” holes at 0.8” on center, when used in a tuned resonant 
absorber. 

We must calculate both R01 and R02: 

R01 = 4.24 x (0.82 x 0.1)/(0.16)3 x  √1000 x 10-3 
 = 2.1 cgs Rayls. 
R02 = 2.88 x (0.82 x 0.1)/(0.16)4 x 10-3 

 = 0.28 cgs Rayls. 

Here, the dominant factor in the flow resistance is the boundary 
layer, R01. 

Also: 

2∆R0 = 4.19(0.82)/(0.16)2 x √1000 x 10-3 
 = 3.3 cgs Rayls. 

The total self-resistance is: 

 2.1 + 3.3 = 5.4 cgs Rayls, 

which at first glance doesn’t seem like much flow resistance. 

But the corresponding value for the resistance ratio R/ρc is 
5.4/41 = 0.13; and, according to Table 3 on page 43, this already 
yields a maximum value of 0.41 for the sound absorption coefficient 
at resonance, even with no deliberately added filling material in the 
air cavity! 

Note that for many practical perforated sheets, the end-
correction term dominates the contributions from the holes, 
themselves, in the total flow resistance. 
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Example 15: 

As a more typical example of commonly used perforated sheet, 
let us repeat the calculation for Item #7 in Table 1 at a frequency of 
8000 Hz. Here the hole diameter d is 0.063", the on-center spacing b 
of the holes is 0.125", and the sheet thickness t is 0.037". (Of the 
examples in Table 1, this one will yield the greatest self-resistance).  

We find:  

R01 = 0.88 cgs Rayls; 
R02 = 0.11 cgs Rayls; 
2∆R0 = 1.48 cgs Rayls. 

Again, R01 dominates. 

Then: 

R = 0.88 + 1.48 = 2.36; 
R/ρc = 0.58; and: 
αmax = 0.2. 

As, suggested above, this value is about the highest that one 
would expect to find in typical perforated metal sheets. If the 
resonator were to be filled with any reasonable absorptive material, 
the acoustical performance would be governed by the filling, not by 
the self-resistance of the sheet. 
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IV. Practical Large-Scale Application of 
Sound-Absorptive Treatments Using 
Perforated Metals 

We conclude this section with some illustrative photographs 
showing sound absorptive treatments for the control of roadway and 
subway noise. 

A. Barrier Screen for Tokyo Roadways 

Because of the extremely crowded conditions in the large 
cities of Japan, the highways and elevated roadways often pass quite 
near residential communities, and cause considerable annoyance to 
the residents because of the noise. 

Considerable protection can be afforded to these communities 
by erecting sound barriers along the roadways, which shield and 
absorb the sound of the motor vehicles. 

In Tokyo alone, there are 90 running miles of such barriers, 
ranging from 8 to 15 feet in height! 

The following photographs show some typical sights along the 
Tokyo roadways. 
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Shown are details of the Tokyo roadway that appears on page 59. These perforated 
curved barriers are more acoustically efficient and present a more pleasing aesthetic 
appearance than the hard barriers presently being used in the United States. 
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B. Absorbtive Barriers and Ceiling Treatments in the 
Vienna Subway System 

A similar large-scale application of perforated metals occurs in 
the newly built sections of the subway in Vienna (Austria) 

The following photographs show some of these treatments. 
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C. Acoustical Effects of the Sound Absorptive 
Treatment in the Vienna Subway 

Figure 28 shows measured data from the Vienna subway in the course of successively more 
extensive sound absorptive treatment of the ceiling and side walls. 

Part A of the figure indicates, on the cross-section of the subway tunnel, the various areas where 
sound absorptive treatment was applied: 

1. On the ceiling over the central platform; 
2. On the lower, outer parts of the side walls; 
3. On the lower walls beneath the central platform; 
4. On the overhang of the central platform floor; 
5. On the ceiling, above the tracks; 
6. On the main side walls of the tunnel. 

Part B of the figure indicates the progressive reduction of the reverberation time in the tunnel (as a 
function of frequency) as successively more sound absorptive treatment was added. 

Part C of the figure indicates the progressive reduction in the A-weighted sound level of the passing 
trains as successively more treatment was added. 

 

Figure 28.  Sound absorbtive treatments in the station. A. Indicates the absorptive sufaces -- j to m, as shown; n, 35 
meters of sound absorptive walls in the tunnel.  B. Reverberation time in the station.  C. Effective sound level of the 
passing trains. 

Exterior acoustical shielding in the 
Vienna subway system:  a sound 
absorptive barrier, with perforated 
metal facing, runs along the tracks to 
shield the neighbors from the noise of 
the wheels and tracks and the traction 
motors. 
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D. Sound Attenuation and Access Factors for These 
Treatments 

It will be noticed that some of the perforated metal sheets in 
these treatments have quite large perforations, rather widely spaced 
(few perforations per inch). 

In view of our earlier discussion of the advantages of 
numerous small holes, it is of interest to calculate the TI for these 
large-scale sheets and the corresponding acoustical parameters. 

Let us assume the 1/16” sheet has 1” holes, staggered at 1 ¼” 
on centers.  The Percentage Open Area is 58% and the number of 
holes per sq. in. is 0.73; that is: 

n = 0.73; d = 1.0”; b = 1.25”; 
t = 0.063”; and a = b – d = 0.25”. 

Then TI = nd2/ta2 

 = 0.73 x (1)2/0.063 x (0.25)2 
 = 185. 

Such a low value of TI implies poor transparency at high 
frequencies.  Figure 23 indicates an attenuation of 5.9 dB at 10 kHz, 
and a corresponding Access Factor of only 0.26 at the frequency. 

But the important frequencies in the noise of roadway and 
subway traffic are below 2000 Hz.  At that frequency, according to 
Figures 21 and 22, the attenuation is only 0.2 dB and the Access 
Factor is up to 0.91; and, of course, the situation improves for all 
lower frequencies. 

Other properties of the perforated sheet in these applications, 
such as ruggedness and durability are more important than the 
highest acoustical transparency. 
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APPENDIX A: Thickness of Sound 
Absorptive Treatment and Sound 
Absorption at Low Frequencies 

Sound is a disturbance in the air characterized (among other 
things) by the fact that the air particles move back and forth locally, 
in a restricted region. The back-and-forth motion is slow at low 
frequencies (say, 100 cycles per second), fast at high frequencies 
(say, 5000 cycles per second). 

This disturbance propagates through the air as a wave, moving 
at a constant speed, independent of frequency, called the speed of 
sound: about 1130 ft/sec at normal temperatures, or about one mile 
in five seconds. 

The wave nature of the sound means that there is a definite 
relation between the air particle motion at different locations in 
space, along the direction of sound propagation.  At positions 
separated by a distance equal to the wavelength of the sound, the air 
particles move together in synchronism, back and forth exactly in 
step. 

The wavelength, λ, is determined by the ratio of the speed of 
sound to the frequency of the sound: 

λ = c/f. 

For air at normal temperature, c = 1130 ft/sec; so for a 
frequency of 100 Hz, the wavelength is λ = 1130/100 = 11.3 ft and 
for a frequency of 5000 Hz, the wavelength is λ = 1130/5000 = 
0.23ft. or 2.7 in. 

In general, low frequencies mean long wavelengths and high 
frequencies mean short wavelengths. 

In the vicinity of a solid reflecting surface (such as the wall or 
ceiling of a room), the sound wave is reflected back into the space 
from which it came, and the incident and reflected waves interfere 
with each other. The result is that directly at the reflecting surface 
the two waves add together to create a sound pressure double that of 
the incident wave. But since the reflecting surface is rigid, there 
cannot be any air particle motion near the wall; the particle velocity 
there is zero. 

Farther from the surface, however, these two waves are out of 
phase with one another, such that at a certain distance the pressure 
waves may cancel one another, leaving nearly null pressure; but at 
this same location the particle velocity is greatly increased to almost 
twice that of the incident wave. This location of maximum particle 
velocity occurs at ¼ wavelength from the surface:  this is 11.3/4 = 
2.83 ft for a frequency of 100 Hz, or 0.68 in for 5000 Hz.
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These phenomena govern the sound absorptive behavior of the 
porous blankets that are often mounted against room surfaces in 
order to absorb some of the sound energy in the incident sound 
waves. 

The absorption takes place by a process of friction between the 
moving air particles and the fibers of the sound absorptive material; 
the sound energy in the incident wave is converted by this friction 
into heat, and it therefore disappears as sound energy from the 
acoustical scene. 

It follows that the most effective sound absorption will occur 
where the air particle motion is greatest. This behavior is quite 
different at low frequencies than at high frequencies because of the 
differences in wavelengths, and the corresponding effect on the 
interference pattern between the direct and reflected waves. 

For this reason, a thin blanket of sound absorptive material 
(say, ½ inch) placed against the wall would have almost no effect on 
a sound wave at 100 Hz, because near the wall there is practically no 
air particle motion and therefore no friction. 

The maximum particle motion for this low frequency would be 
at a distance of ¼ wavelength (34 inches) from the surface. In order 
for the blanket to absorb the 100 Hz sound effectively, it would have 
to be mounted at this distance, where it would be very effective, even 
with nothing but airspace between it and the wall. (It would be even 
more advantageous if this back space is partitioned into closed cells, 
as we have seen on page 30.) 

One way to place absorptive material far from the wall is 
simply to use a very thick layer. In this case, the part of the material 
near the wall takes little part in absorbing the sound, but is simply a 
means of supporting the rest of the material farther away from the 
wall, where it can do a very good job. Even a blanket thickness of 
only six inches yields very effective sound absorption at 100 Hz (see 
Figure 12, page 11). 

For much higher frequencies, however, the quarter-wavelength 
location is much nearer the wall, and relatively thin blankets of 
fibrous material can absorb the sound very effectively (see again 
Figure 12). 

The reason for using sound absorbers with perforated metal 
facings is to create an acoustical resonance condition, such that even 
at low frequencies the location of maximum air particle velocity is 
made to be near the wall surface. This saves on space and on the 
amount of sound absorptive material required for the installation. 
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APPENDIX B:  Background for the 
Transparency Index and the Attenuation 
of Perforated Metal at High Frequencies 

A number of years ago an experiment was conducted for the 
purpose of evaluating various kinds of transparent and semi-
transparent material to determine how readily they would transmit 
sound. 

The experiment was conducted in a so-called “anechoic 
chamber,” namely, a room whose interior surfaces are all covered 
with highly sound-absorptive material, in order to suppress all sound 
reflections as completely as possible. 

 

Figure B-1.  ‘Direct Path’ test arrangement. 

Figure B-l shows the setup. A loudspeaker out in the room 
radiates broad-band sound (containing all the frequencies of interest) 
toward a microphone located in a corner of the room. The sound at 
various frequencies received by the microphone in this situation is 
regarded as a baseline. Then, when a sample of perforated material is 
interposed between the loudspeaker and the microphone and the 
measurements are repeated, the differences, frequency by frequency, 
between the new measurement and the baseline measurement give an 
indication of the amount by which the sample attenuates the sound 
passing through. The measurements were made with two angles for 
the incident sound: perpendicular (0º) and 45º. 

2’ x 2’ Screen (0° Position) 

Anechoic Chamber, Schematic Plan View 

Microphone 

loudspeaker 

45° Position 
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Figure B-2 shows the result of such a measurement with a 
solid (i.e., acoustically opaque) plastic panel in the sample position, 
to illustrate that there is very little “sound-spill” around the sample. 
In other words, the measurement accurately assesses the attenuation 
of the test sample, since there is no contamination by sound leaking 
around the sample. 

 

Figure B-2.  Difference in sound levels, showing insertion loss of 2’ x 2’ plastic 
panel (i.e. ‘spill’) 

0° Angle of Incidence 

45° Angle of Incidence 

Octave Band Center Frequencies in Cycles per Second 
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One sample that was tested at that time, Material “G,” was 
perforated metal sheet having No. 8 perforations, 0.066” in diameter, 
1/8” on center (73 holes per sq. in.). The sample was 1/16” thick and 
2’ x 2’ square. It is shown full-scale in Figure B-3. The direct path 
test was used with 0° and 45° angles of incidence for the incoming 
sound. The test results are shown here in Figure B-4. The attenuation 
at a frequency of 10,000 Hz was 2 dB for 0° incidence, and 1.5 dB 
for 45°. 

 

Figure b-4.  Test results, insertion loss vs. frequency, Material G. 

 

Figure B-3.  Material G. 

0° (Straight Through) 

45° (Angle of Incidence) 

Third Octave Band Center Frequency in Cycles per Second 
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The results of ten such measurements are given in Figure B-5, 
where the values of the Transmission Index (TI = nd2/ta2) for the 
various test samples are plotted on the horizontal scale, while the 
corresponding values of sound attenuation for a frequency of 10,000 
Hz are plotted on the vertical scale. The data point “G” is for the 
sample described above. 

The curve shown on Figure B-5 was empirically fitted to the 
measured data points; it corresponds to the following formula: 

A (10 kHz) = -22.56 log log TI + 0.008 √TI + 13.79 dB. 

 

 

Figure B-5. 

As for the formula for the Transmission Index, itself: 

TI = nd2/ta2, 

it was adopted in a slightly arbitrary manner. First, the four quan-
tities involved are those (and only those) that ought to govern the 
sound attenuation through the sheet. And the particular formula 
chosen was the simplest combination of those quantities that yielded 
a monotonic function for the attenuation, with no peculiar, sudden 
changes in slope. 

The slight arbitrariness of the formula is no disadvantage, 
since the TI, as a quantity, has no significance except as it is related 
to Figures 21, 22 and 23 in this booklet. 

Attenuation = -22.56 loglog TI + 0.008vTI + 13.79 
(at 10 KHz) 
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APPENDIX C: The Access Factor, and 
Access of the Sound Wave to the Sound 
Absorptive “Treatment” Lying Behind the 
Perforated Metal 

In Section II.B of Part Two, we describe the use of the Access 
Factor as a means of accounting for the access that the sound wave 
has to the acoustical treatment lying behind the perforated metal, 
taking into account the attenuation suffered by the sound in passing 
through it. 

If this treatment is a sound absorptive blanket, whose 
absorption coefficients are known for the various frequencies of 
interest, we assess the degradation of the sound absorptive capabil-
ity of that blanket, due to the perforated metal covering it, by 
multiplying the absorption coefficients of the blanket by the Access 
Factor for the perforated metal at the various frequencies. In this 
case, we treat the Access Factor as a quantitative measure of how 
much of the incident sound energy gets through to encounter the 
blanket. 

In principle, this procedure is not technically correct; the 
matter is much more complicated than that. If we were to carry out 
the correct procedure, it would require adding the mass impedance 
represented by the perforated metal screen to the impedance of 
whatever combination of materials lies behind it, and then 
recalculating, from the impedance of the whole ensemble, the net 
absorption coefficient presented to the incident sound. This is a 
complicated procedure, indeed, and one that (even so) does not 
necessarily give the right answer, since a number of questionable 
assumptions are involved. 

It is believed that, for the range of perforated materials likely 
to be used in these applications, and for the types of sound absorptive 
treatments that they will be used to cover, the use of the Access 
Factor, as prescribed in Section B, will give answers with acceptable 
accuracy. 
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APPENDIX D: Work Sheets 

This appendix contains clean work sheets corresponding to 
figures in the main report. They are intended to be photo-copied and 
used for the calculations required in the design of acoustical 
treatments using perforated metal. The completed sheets should be 
kept with the job file for the project in question. 

The work sheets are as follows: 

Figure 17.  Nomogram for Calculating the Resonance Frequency 
of a Tuned Resonant Sound Absorber. 

Figure 21.  Sound Attenuation VS Frequency for Samples of 
Perforated Metal Having Different Values of Transparency 
Index (TI). 

Figure 22.  Curves Showing the Access Factor VS Frequency for 
the Samples of Perforated Metal Having Different Values of TI. 

Figure 23.  Nomogram for Calculating the Sound Attenuation 
and the Access Factor at a Frequency of 10,000 Hz (cps). 
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Nomogram for Calculating the Resonance Frequency of a Tuned Resonant Sound Absorber. 
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Sound Attenuation vs Frequency for Samples of Perforated Metal 
Having Different Values of Transparency Index (TI). 
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Curves Showing the Access Factor vs Frequency for the Same 
Samples of Perforated Metal Having Different Values of 
Transparency Index. 
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Nomogram for Calculating the Sound Attentuation and the Access Factor at a Frequency of 10,000 Hz (cps). 
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